МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Биологический факультет Кафедра биохимии и физиологии человека и животных С.А. Костогорова студентка 4 курса СОДЕРЖАНИЕ АСКОРБИНОВОЙ, ДЕГИДРОАСКОРБИНОВОЙ И ДИКЕТОГУЛОНОВОЙ КИСЛОТ В ЭРИТРОЦИТАХ ЗДОРОВЫХ ДЕТЕЙ И СТРАДАЮЩИХ ИНСУЛИНЗАВИСИМЫМ САХАРНЫМ ДИАБЕТОМ (курсовая работа) Научный руководитель: к.б.н., доц. Титова Н.М. КРАСНОЯРСК, 1999
ВВЕДЕНИЕ 2 ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 3 1.1.Биохимические процессы при созревании и старении эритроцитов 3 1.1.1. Характеристика эритроцитов 3 1.1.2. Энергетический обмен в эритроцитах 5 1.1.3. Антиоксидантная система эритроцитов 6 1.2. Аскорбат как компонент АОС эритроцитов 8 1.2.1. Строение и физико-химические свойства аскорбата 8 1.3. Сахарный диабет как один из распространёенных патологических процессов 9 ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ 11 2.1. Подготовка эритроцитов 11 2.2. Метод раздельного определения аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в эритроцитах 11 2.3. СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ 13 ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 14 ВЫВОДЫ 15 ЛИТЕРАТУРА 16 SUMMARY 19 Приложение 20
ЛИТЕРАТУРА 1. Абрамова Ж.И., Оксенгендлер Г.И. Человек и противоокислительные ве-щества. –Л.:Наука, 1985. –230 С. 2. Авраамова Т.В., Титова Н.М. Руководство по большому биохимческому практикуму. –Красноярск: Изд-во КГУ, 1978, ч.1. –С.80-82. 3. Асатиани В.С. Ферментные методы анализа. –М.:Наука, 1969. –С.26-40. 4. Ахромеева Г.И. Определение дегидроаскорбиновой кислоты в пищевых продуктах //Вопросы питания. –1988. -№3. –С.66-88. 5. Ашкинази И.Я. Разрушение эритроцитов // Физиология системы крови. Физиология эритропоэза. –Л.:Наука, 1979. –С.274-334. 6. Березовский В.М. Химия витаминов. –М.:Пищевая промышленность, 1973. –С.230-300. 7. Борец В.М. Витамины. –М.:Наука, 1980. –29 С. 8. Бохински Р. Современные воззрения в биохимии. –М.:Мир, 1987. –С.120-154. 9. Браунштейн А.Е. Процессы и ферменты клеточного метаболизма. –М.:Наука, 1987. –44С. 10. Бременер С.М. Витамины. –М.:Медицина, 1974. –194С. 11. Бреслер В.М., Никифоров А.А. Транспорт органических кислот через плазматические мембраны дифференцированных эпителиальных слоёв у позвоночных. –Л.:Наука, 1981. –С.52-111. 12. Букин В.Н. Биохимия витаминов. –М.:Наука, 1982. –С.17-19. 13. Владимиров Г.Е. Об энергетической функции АТФ в клетке. –Л.:Наука, 1980. –44С. 14. Гаврилов О.К., Козинец Т.И., Черняк Н.В. Клетки костного мозга и пери-ферической крови. –М.:Медицина, 1985. –288С. 15. Галактионов С.Г. Биологически активные. –М.:Молодая гвардия, 1988. –С.4-84. 16. Григорьев Г.П. Цитохром Р-450 и витамин С //Вопросы питания. –1983. -№4. –С.5-10. 17. Дегли С., Никольсон Д. Метаболические пути. –М.:Мир, 1973. –С.189-196. 18. Домбровская Ю.В. Витаминная недостаточность у детей. –М.:Медицина, 1983. –63С. 19. Ефимов А.С., Бездробный Ю.В. Структура и функции инсулиновых рецеп-торов. –Киев.:Наукова думка, 1987. –С.4-104. 20. Канунго М. Биохимия старения. –М.:Медицина, 1982. –194С. 21. Киверин М.Д. Витамин С и профилактика С-витаминозных состояний на Севере. –Сев.-Зап. книжное изд., 1971. –С.5-7. 22. Кон Р.М. Ранняя диагностика болезней обмена веществ. –М.:Медицина, 1986. –С.17-42. 23. Косяков К.С. Клиническая биохимия. –Л.:Медицина, 1997. –С.113-118. 24. Меньщикова Е.Б., Зенков Н.К. Антиоксиданты и ингибиторы радикальных окислительных процессов // Усп. совр. биол. –1993. –№4. –С.442-455. 25. Мережинский М.Ф. Нарушения углеводного обмена при заболеваниях че-ловека. –Минск.:Медицина, 1987. –С.22-28. 26. Моисеева О.И. Физиологические механизмы регуляции эритропоэза. –Л.:Наука, 1985. –185С. 27. Мосягина Е.Н., Владимирская Е.Б. Кинетика эритрона //Кинетика фермен-тативных элементов крови. –М.:Медицина, 1976. –С.101-122. 28. Мосягина Е.Н., Фёдоров Н.А., Гудим В.И. Эритропоэз // Нормальное кро-ветворение и его регуляция /Под ред. Н.А.Фёдорова. –М.:Медицина, 1976. –С.341-457. 29. Новое в гематологии /Под ред.А.И. Воробьёва, Ю.И.Лория. –М.:Медицина, 1974. –С.18-22. 30. Новикова С.Г. На приёме больной сахарным диабетом //Здоровье. –1997. -№3.-С.14-19. 31. Спиричев В.Б. Врождённые нарушения обмена витаминов. –М.:Медицина, 1995. –С.12-19. 32. Патологическая биохимия /Под ред. А.Ф. Симёнова. –М.:Медицина, 1994. –С.130-147. 33. Рубина Х.М. Биохимия эритроцитов //Физиология системы крови. Физио-логия эритопоэза. –Л.:Наука, 1978. –С.211-232. 34. Рубина Х.М. Некоторые данные о связи метаболизма эритроцитов с их кислородно-транспортной функцией //Проблемы гематологии и перелива-ния крови. –1973. -№8. –35С. 35. Рысс М.Н Витамины. –Л.:Наука, 1963. –С.3-9. 36. Свободные радикалы в биологии /Под ред. У.Прайор. –М.:Мир, 1979. –С.272-308. 37. Смирнов Н.И. Витамины. –М.:Медицина, 1974. –С.34-40. 38. Соколовский В.В., Лебедева Л.В., Лиэлуп Т.Б. Определение аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в биологических тканях // Лаб.дело. –1967. -№12. –С.160-162. 39. Суровова А.П. Витамины в нашем рационе // Здоровье. –1997. -№2. –С.17-20. 40. Схимниковский Б.Г. Авитаминозы у детей //Здоровье. –1998. -№6. –С.11-13. 41. Черницкий Е.А., Воробей А.В. Структура и функции эритроцитарных мембран. –Минск: Наука и техника, 1981. – С.23-56. 42. Черняк Н.Б. Биохимические процессы при созревании и старении эритро-цитов //Нормальное кроветворение и его регуляция. –М.:Медицина,1976. –С.159-186. 43. Baker W.I. Urate and ascorbate: their possible roles as antioxidants in determining longevity of mammalian species //Arch. Biochem. and Biophis. –1987. -№2. –Р.451-457. 44. Basu S., Som S., Ded S. Dehydroascorbic acid reduction in human erythrocytes //J. Chromatogr. Biomed. Appl. –1991. -№1-2. –Р.529-542. 45. Burns J., Evans C. Ascorbic acid in human erythrocytes // J. Biol. Chem. – 1996. - №4. – P. 223-241. 46. Penney J., Zilua S. Role of ascorbate in our organism // J. Biochem. – 1994. - №2. – P. 37-49. 47. Pradhu H.R., Krishnamurthy S. Inhibition of ascorbate autooxidation by human blood //Curr. Sci. (India). –1986. -№8. –Р.403-405. 48. Sahashi Y., Mioki T., Hasegama T. Reduction of ascorbate in erythrocytes // J. Vitaminol. – 1996. - №12. – P.6 – 14. 49. Thompson R.Q. Ascorbic acid content of plasma and cellular components of blood //Anal.Chem. –1987. -№8. –Р.1119-1121. 50. Yamazaki M., Mioki T. Ascorbic acid is cellular components // J. Ferment. Technolog. – 1995. - №7. – P. 422-513.
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО
ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Биологический факультет
Кафедра биохимии и физиологии человека и животных
С.А. Костогорова
студентка 4 курса
СОДЕРЖАНИЕ АСКОРБИНОВОЙ, ДЕГИДРОАСКОРБИНОВОЙ И ДИКЕТОГУЛОНОВОЙ КИСЛОТ В ЭРИТРОЦИТАХ ЗДОРОВЫХ ДЕТЕЙ И СТРАДАЮЩИХ ИНСУЛИНЗАВИСИМЫМ САХАРНЫМ ДИАБЕТОМ
(курсовая работа)
Научный руководитель:
к.б.н., доц. Титова Н.М.
КРАСНОЯРСК, 1999
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 2
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 3
1.1.Биохимические процессы при созревании и старении эритроцитов 3
1.1.1. Характеристика эритроцитов 3
1.1.2. Энергетический обмен в эритроцитах 5
1.1.3. Антиоксидантная система эритроцитов 6
1.2. Аскорбат как компонент АОС эритроцитов 8
1.2.1. Строение и физико-химические свойства аскорбата 8
1.3. Сахарный диабет как один из распространёенных патологических процессов 9
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ 11
2.1. Подготовка эритроцитов 11
2.2. Метод раздельного определения аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в эритроцитах 11
2.3. СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ 13
ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 14
ВЫВОДЫ 15
ЛИТЕРАТУРА 16
SUMMARY 19
Приложение 20
ВВЕДЕНИЕ
Зрелые эритроциты млекопитающих – это высокоспециализированные безъ-ядерные клетки. Основной функцией эритроцитов является транспорт кислорода от клетки к тканям и углекислоты в обратном направлении. Высокие концентрации кислорода и процессы оксигенации – деоксигенации гемоглобина обуславливают образование высокореакционных интермедиатов кислорода, вызывающих наруше-ние нормального функционирования клетки. Существует антиоксидантная система защиты клетки от свободнорадикального окисления. В её состав входит ряд фер-ментов и небелковых веществ. Важную роль в антиоксидантной системе играет вещество небелковой природы – аскорбат. Он обладает широким спектром антиок-сидантных свойств, в частности, только аскорбат достаточно реакционноспособен для эффективного ингибирования инициации перекисного окисления липидов. Ас-корбат блокирует поглощение кислорода и образование перекиси водорода; при-сутствие аскорбата в клетках оказывает защитное действие на гемоглобин, препят-ствуя его окислению. Аскорбат в ходе выполнения своих биохимических функций обратимо переходит в окисленную форму – ДАК и ДКГК. Основную роль в био-химических процессах играет редокс-пара – АК/ДАК. По данным литературы, это соотношение может меняться при различных патологических процессах, одним из наиболее распространённых из них является инсулинзависимый сахарный диабет. Исследования, направленные на изучение изменения содержания АК, ДАК и ДКГК в клетках могут быть одним из критериев, свидетельствующих о наличии в орга-низме вышеуказанных процессов.
Целью данной работы явилось определение содержания АК, ДАК, ДКГК в об-щей эритроцитарной массе у детей, страдающих инсулинзависимым сахарным диабетом. Данная работа представляет собой часть исследований, проводимых на кафедре биохимии и физиологии человека и животных КГУ по изучению метабо-лизма эритроцитов.
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1.Биохимические процессы при созревании и старении эритроцитов
1.1.1. Характеристика эритроцитов
Зрелый эритроцит человека является упрощенной клеткой по биохимической и структурной организации. Это высокоспециализированная безъядерная клетка. Эритроциты человека образуются из ядросодержащих клеток преимущественно в костном мозге. В этих предшественниках эритроцитов содержатся субклеточные структуры и ферментные системы, необходимые для деления, созревания, диффе-ренцировки, процессов биосинтеза ДНК, РНК, белков, в том числе глобина, синтеза гема, липидов, углеводов, других соединений. На этой стадии развития эритроцита осуществляются окислительные процессы, тканевое дыхание, анаэробное расщепление углеводов (гликолиз), прямое окисление глюкозы через пентозофос-фатный путь (Черняк Н.Б., 1976).
До сих пор нет достаточно чётких представлений о том, как соотносятся от-дельные стадии созревания ядерных клеток с изменениями химического состава и обмена веществ. Однако известно, что в процессе развития клетки на стадии нор-мобласта уменьшается количество РНК, увеличивается содержание гемоглобина и утрачивается способность к синтезу ДНК, в связи с чем нарушается способность к митотическому делению.
Ретикулоциты – безъядерные клетки, образующиеся на последнем этапе созре-вания, предшествующем образованию эритроцитов, характеризуются схожей мор-фологией, в частности, содержат митохондрии, рибосомы, ЭПР. В ретикулоцитах осуществляется биосинтез глобина, гема, пуринов, пиридиннуклеотидов, фосфати-дов, липидов (Фёдоров Н.А., Черняк Н.Б., 1976). РНК практически не синтезируется. Происходит фосфорилирование, сопряжённое с окислением, и гликолиз (Гинодман Л.М., 1968). В обмене веществ ретикулоцитов участвуют эндогенные и экзогенные субстраты, в том числе аминокислоты, глюкоза.
Последний этап созревания – превращение ретикулоцита в эритроцит – проте-кает 1-3 дня. Происходят значительные изменения в обмене веществ и морфологии клеток (Фёдоров Н.А., 1976).
В зрелых безъядерных эритроцитах нарушены биологический аппарат дыхания, системы синтеза белка, пуринов, порфиринов. Сохраняется способность к гликоли-зу, утилизации небольшого количества глюкозы в пентозном цикле и синтезу неко-торых соединений, например, глутатиона.
В норме длительность жизни эритроцитов поддерживается в течение 120 дней специализированными ферментными системами. Выведение эритроцитов из цир-куляции связано с изменениями (структурных компонентов, химического состава, источников энергии), характеризующими старение клеток. Наиболее характерными изменениями при старении эритроцитов являются:
1) уменьшение активности различных ферментов гликолиза и пентозного цикла, что понижает интенсивность данных процессов (Мортенсен, Брайн, 1974);
2) уменьшение содержания липидов, что приводит к изменению структуры эритроцитов, увеличению чувствительности к осмотическому лизису и меха-ническим воздействиям;
3) изменения в составе катионов в результате изменения проницаемости мембраны;
4) изменение содержания АТР, что в свою очередь связывается как с одной из причин нарушения проницаемости, так и с уменьшением приживаемости эритроцитов в кровяном русле.
Одной из ведущих гипотез старения является свободнорадикальная гипотеза, предложенная Д. Хартманом. Она связывает причины возрастных изменений с накоплением молекулярных повреждений в мембранах и генетическом аппара-те клетки свободными радикалами и продуктами перекисного окисления липи-дов. Нарушение нормального функционирования клетки обусловлено высоки-ми скоростями образования высокореакционных интермедиатов кислорода (супероксидрадикал, пероксид водорода, гидроксильный радикал), что, в свою очередь, связано с постоянно протекающими процессами оксигенации и деок-сигенации гемоглобина и наличием высоких концентраций кислорода в ходе выполнения основной функции эритроцитов – транспорта кислорода от клетки к тканям и углекислого газа в обратном направлении.
1.1.2. Энергетический обмен в эритроцитах
Для поддержания функциональной активности клеток организма необходима затрата энергии. Зрелые эритроциты, циркулирующие в кровяном русле, являются метаболически активными клетками, несмотря на отсутствие способности к синтезу белков, аэробному расщеплению глюкозы в лимоннокислом цикле Кребса (Вла-димиров Г.Е. по Рапопорту, 1970). Основным процессом обмена энергии в них яв-ляется гликолиз. Процесс, протекающий в эритроцитах, близок к процессам в дру-гих клетках и тканях, и подробно описан (Фёдоров Н.А. по Райкеру, 1976).
К особенностям гликолиза в эритроцитах можно отнести использование, поми-мо глюкозы, других моносахаридов: фруктозы, маннозы, галактозы, а также инози-на, сорбита при наличии соответствующих ферментов (Йошикава, 1968). В процес-се гликолиза происходит образование АТР и NADH. Энергия гликолиза использу-ется для активного транспорта катионов через клеточную мембрану и поддержания соотношения между ионами калия и натрия в эритроцитах и плазме, для сохранения целостности мембраны и двояковогнутой формы клетки. Образующийся NADH используется для восстановления пировиноградной кислоты в молочную и для восстановления метгемоглобина при участии метгемоглобинредуктазы. В составе метгемоглобина содержится трёхвалентное железо, вследствие чего он не способен к транспорту кислорода. Характерной особенностью гликолиза в эритроцитах является превращение 1,3- дифосфоглицерата не только в 3-фосфоглицерат, но и в 2,3-дифосфоглицериновую кислоту под действием дифосфоглицеромутазы. 2,3-дифосфоглицерат имеет, наряду с АТР, важное значение в регуляции сродства гемоглобина к кислороду. По мере старения эритроцита происходит уменьшение способности к восстановлению метгемоглобина в гемоглобин, т.е. нарушение функциональной активности эритроцита. Это связанно именно с уменьшением ин-тенсивности гликолиза, в результате которого образуется NADH, необходимый для действия метгемоглобинредуктазы. Уменьшение содержания 2,3-дифосфоглицерата приводит к сдвигу диссоциационной кривой влево, ухудшению отдачи кислорода тканям.
Итогом всех реакций гликолиза является превращение 1 молекулы глюкозы в 2 молекулы молочной кислоты с одновременным превращением 2 молекул ADP в 2 молекулы АТР.
Наряду с гликолизом – анаэробным расщеплением глюкозы до молочной кис-лоты – в эритроцитах существует дополнительный путь утилизации глюкозы – прямое окисление до углекислого газа и воды в ходе пентозофосфатного цикла. Этот путь неотличим от подобных процессов, протекающих в других клетках и тканях; суммарным результатом цикла является окисление одной из 6 молекул глюкозо-6-фосфата до 6 молекул СО2 и восстановление 12 молекул NADPH. Роль пентозного цикла в зрелых эритроцитах заключается, с одной стороны, в образова-нии пентозофосфатов. В реакции цикла образуется 3-глицероальдегидфосфат, под-вергающийся превращениям в цепи гликолитических реакций и, таким образом, является дополнительным источником энергии. Основное значение пентозофос-фатного цикла заключено в образовании молекул NADPH. Значение NADPH опре-деляется его участием в ряде реакций, необходимых для поддержания функцио-нальной активности и целостности эритроцитов. К ним относятся восстановление метгемоглобина в гемоглобин при участии NADPH и метгемоглобинредуктазы и восстановление окисленного глутатиона с помощь. NADPH- глутатионредуктазы. Восстановленный глутатион (GSH), форма со свободно реагирующей тиоловой группой составляет в эритроцитах до 96% общего количества. Сохранение глута-тиона в восстановленном состоянии необходимо для предохранения ряда фермен-тов, содержащих SH- группы, от инактивации, ограждение мембраны клетки от действия перекисей и необратимого окислительного денатурирования гемоглобина.
1.1.3. Антиоксидантная система эритроцитов
Основная функция эритроцитов – транспорт кислорода от лёгких к тканям и СО2 в обратном направлении. Благодаря высоким концентрациям кислорода и по-стоянно протекающим процессам оксигенации – деоксигенации гемоглобина, в этих клетках с высокой скоростью идут процессы образования свободных радика-лов: Н2О2, ОН-. Кроме того, в эритроцитах в результате аутокаталитических реакций образуются перекиси и гидроперекиси липидов.
Основное количество О2- в эритроцитах образуется при аутоокислении гемо-глобина в метгемоглобин. Это пример генерации супероксидного радикала, свя-занной с неферментативным окислением субстрата:
Hb + O2 Hb…O2 MetHb + O2-
Большую роль в защите клетки от свободных радикалов играют ферментатив-ные антиоксиданты. Эритроциты содержат высокоактивную супероксиддисмутазу, которая осуществляет дисмутацию двух O2- с образованием перекиси водорода:
O2- + O2- H2O2 + O2
Образовавшаяся перекись водорода, являющаяся сильнейшим окислителем, ча-стично нейтрализуется неферментативным путём при непосредственном участии аскорбата или других антиоксидантов (-токоферол, глутатион восстановленный). Основное количество Н2О2 расщепляется в реакциях, катализируемых каталазой и глутатионпероксидазой:
Н2О2 + Н2О2 2Н2О + О2
Н2О2 + RH2 2Н2О + R
Важную роль в антиоксидантной системе эритроцитов играют легкоокисляю-щиеся пептиды, содержащие аминокислоты с SH-группой: метионин, цистеин. Особое место занимает глутатион – трипептид, образованный цистеином, глутама-том, глицином. В организме он присутствует в окисленной и восстановленной форме (GSH). Основной антиоксидантный эффект глутатион оказывает, участвуя в работе ферментативных антиоксидантов. Глутатион является ингибитором активи-рованных кислородных радикалов и стабилизатором мембран. Это связано с тем, что SH- содержащие соединения подвергаются окислению в первую очередь, что предохраняет от окисления другие функциональные группы.
Немаловажный вклад в защиту клетки от органических радикалов вносят не-ферментативные антиоксиданты. Эффективными перехватчиками органических радикалов являются фенольные антиоксиданты, имеющие в структуре ароматиче-ское кольцо, связанное с одной или несколькими гидроксильными группами. Име-ется несколько тысяч фенольных соединений, обладающих антиоксидантным эф-фектом: витамины группы Е и К, триптофан, фенилаланин, убихиноны, большинство животных и растительных (каротиноиды, флавоноиды) пигментов. Синтезируется ароматическое кольцо только у высших растений и микроорганизмов, поэтому многие из фенольных антиоксидантов входят в группу облигатных пищевых, которые эффективно ингибируют О2- , ОН- и индуцируемые ими процессы пере-кисного окисления (Оксенгендлер, 1985).
Антиоксидантными свойствами обладают хелатные соединения, связывающие металлы переменной валентности (церулоплазмин, мочевая кислота, трансферрин). Тем самым они препятствуют вовлечению их в реакции разложения перекисей, по-скольку в присутствии металлов переменной валентности образование высокоре-акционных радикалов усиливается (Эристер, 1987).
Таким образом, развитие и функционирование клеток в кислородсодержащей среде не представляется возможным без существования защитных систем – специ-ализированных ферментативных и неферментативных антиоксидантов. В живых организмах постоянен процесс образования прооксидантов, уравновешиваемый дезактивацией их антиоксидантными системами. Для поддержания гомеостаза ре-генерация антиоксидантов должна быть непрерывной. Отсутствие или нарушение в её непрерывной работе приводит к развитию окислительных процессов, к накопле-нию окислительных повреждений, что сопровождает ряд патологических физиоло-гических процессов, например, старение (Оксенгендлер, 1985).
1.2. Аскорбат как компонент АОС эритроцитов
1.2.1. Строение и физико-химические свойства аскорбата
Витамин С (L-аскорбиновая кислота) входит в состав алифатического ряда ви-таминов. По своему строению он может быть отнесен к производным углеводов. Это γ-лактон 2,3-дегидро-L-гулоновой кислоты, производное ненасыщенных поли-окси-γ-лактонов. Структура близка структуре -глюкозы.
Благодаря наличию двух асимметричных атомов углерода в 4 и 5 положениях, аскорбиновая кислота (АК) образует 4 оптических изомера и 2 рацемата. D- и L- аскорбиновые кислоты в природе не встречаются и синтезированы искусственным путём.
Наличие в АК двух сопряжённых двойных связей (углерод-углеродной и угле-род-кислородной) обуславливает ее способность к обратимому окислению, продуктом которого является дегидроаскорбиновая кислота (ДАК). ДАК устойчива, но ее лактонное кольцо, в отличие от стабилизированного двойной связью лактонного кольца L-АК в водном растворе легко гидролизуется с образованием 2,3-дикетогулоновой кислоты (2,3-ДКГК). Эта реакция необратима, ее скорость возрастает при повышении температуры и рН среды. Через ряд дальнейших превращений ДКГК переходит в щавелевую и L-треоновую кислоты. Такое же превращение имеет место в организме (Халмурадов, Тоцкий, 1993):
Способность к О-В превращениям, связанная с ендольной группировкой, кото-рая стабилизирована находящейся в цикле соседней карбонильной группировкой, сопровождающаяся перенесением атомов водорода к акцепторам, является важ-нейшей каталитической функцией АК в живом организме. L-АК по своей биологи-ческой активности высокоспецифична. Витаминная активность проявляется только при наличии свободных гидроксильных групп. Различные функциональные произ-водные по ним лишают молекулу витаминной активности почти полностью, как и гидрирование ненасыщенной связи лактонного кольца. Поэтому L-ДАК имеет ви-таминную активность, равноценную L-АК, тогда как 2,3-ДКГК полностью ее ли-шена. Вследствие легкой окисляемости L-АК – донор Н+, она количественно легко восстанавливает многочисленные соединения, как-то: йод, перманганат калия и другие. L-АК – переносчик Н+ в некоторых ферментативных реакциях живой клет-ки, она легко окисляется пероксидазой, цитохромоксидазой, каталазой. L-АК вос-станавливает окисленные формы ферментов, окисляясь в ДАК, обратимо легко ре-генерирующуюся в АК под действием глутатиона за счет его сульфгидрильной группы:
Окисление АК катализируется медью, в меньшей степени – катионами серебра и железа. Имеется предположение, что специфическим катализатором окисления АК в животных организмах является белок, синтезирующийся в печени, осуществ-ляющий транспорт меди, обладающий оксигеназной активностью, - церулоплазмин. В меньшей степени окисление аскорбата катализируют другие катионы, в частности, серебра и железа. Комплексоны, флавоноиды тормозят окислительный распад АК. Некоторые белки ингибируют окисление АК, связываясь с ней или пу-тём образования комплекса с медью – сывороточные глобулины (Борец, 1980). Окисление тормозится –SH содержащими соединениями: сернистая кислота бло-кирует фермент аскорбиназу; С-SH связывает ионы Cu+, удаляя т. с. катализатор окисления АК из реакции (Киверин, 1971).
1.2.2. Биосинтез АК в живом организме
L-АК синтезируется в растениях и организме некоторых животных из D-глюкозы через лактон D-глюкуроновой кислоты и L-гулоно-γ-лактон или их произ-водное. В процессе биосинтеза происходит превращение соединений D-ряда в со-единения L-ряда (Березовский, 1993):
Биосинтез АК в организме животных происходит в клетках печени, почек, надпочечников, гипофиза, стенки тонкого кишечника (Киварин, 1973).
1.2.3. Физиологические свойства аскорбата
Витамин С является постоянной составной частью тканей и органов человека. Его поступление в организм должно быть ежедневным, т. к. аскорбат, играя важную роль в обменных процессах организма, все время расходуется. Он восстанавливает окисленные формы ферментов, активирует некоторые протеазы, тормозит действие амилазы и протеазы поджелудочной железы, активирует эстеразу печени. L-АК участвует в обмене некоторых ароматических аминокислот, регулирует уровень холестерина в крови, усиливает антитоксические функции гепатоцитов (вкупе с глюкозой), норамализирует белковообразование. Витамин С необходим для нор-мального функционирования клеток, продуцирующих коллаген, активирует и ре-гулирует зритропоэз (способствуя усвоению железа), нормализует нарушенное протромбинообразование, нормализует процессы свертывания (Андреев; 1996). Аскорбат играет положительную роль в развитии иммунных реакций организма, обладает некоторым детоксицирующим свойством, является существенным факто-ром профилактики и лечения инфекционных заболеваний.
Витамин С оказывает положительное воздействие на углеводный обмен. Во-лынский З. М. с сотрудниками показали, что повышает синтез гликогена в печени, и что нарастание содержания гликогена в печени, как правило, прямо пропорцио-нально повышению в этом органе витамина С. К такому выводу позволяют прийти многочисленные клинические наблюдения последнего времени, подтверждающие ценное свойство АК обладать нормализующим действием на уровень сахара в кро-ви. Подобный эффект связан с синергическим действием аскорбата и гормонов – инсулина и адреналина. Витамин С может усиливать действие инсулина или дей-ствовать аналогично ему, способствуя образование гликогена в печени. Синергизм возникает косвенным путем через воздействие инсулина и витамина С на обще-гормональный фон организма.
Таким образом, АК оказывает разностороннее влияние на процессы обмена веществ у здоровых людей, а при различных патологических состояниях благопри-ятствует нормальному течению обмена веществ и функционированию различных органов и систем организма (Бременер; 1997).
1.3. Сахарный диабет как один из распространенных патологических процес-сов
Диабет сахарный (diabetes mellitus; сахарная болезнь, сахарное мочеизнурение) – эндокринное заболевание, обусловленное дефицитом гормона инсулина в организме или его низкой биологической активностью; характеризуется хроническим течением, нарушением всех видов обмена веществ, ангиопатией.
Сахарный диабет представляет собой самую распространённую эндокринную патологию. В его развитии существенную роль играют наследственная предраспо-ложенность и неблагоприятное воздействие окружающей среды, однако, характер наследственной предрасположенности и так называемых факторов риска различны при разных типах сахарного диабета. Факторами риска развития сахарного диабета являются появление антител к -клеткам островков поджелудочной железы, частые вирусные инфекции, гиподинамия, ожирение, нерациональное или недостаточное питание, стрессы, генетически отягощенный по сахарному диабету анамнез и дру-гие.
Согласно классификации ВОЗ, различают два основных типа сахарного диабе-та. Это инсулинзависимый (I тип) и инсулиннезависимый (II тип) сахарный диабет. Инсулинзависимый сахарный диабет, как правило, развивается у лиц молодого возраста и детей, имеющих генетическую предрасположенность к сахарному диа-бету именно данного типа. Инсулиннезависимым сахарным диабетом чаще болеют лица, старше 50 лет (особенно женщины). Наследственная предрасположенность играет большую роль, чем при сахарном диабете I – типа.
Механизм развития сахарного диабета сложен и многогранен. Он зависит как от функции самой поджелудочной железы, так и от внепанкреатических факторов. Прежде всего, нарушен обмен углеводов. Из-за недостатка инсулина или других причин затрудняется переход глюкозы в мышечную и жировую ткань, снижается синтез гликогена в печени, усиливается образование глюкозы из белков и жиров (глюконеогенез). В развитии этих процессов увеличивается содержание глюкозы в крови. Если в норме оно довольно устойчиво и натощак у здоровых людей колеб-лется в пределах 3,33 – 35,55 ммоль/л (70 – 100 мг%), то при сахарном диабете в зависимости от формы и тяжести течения обычно превышает 6,00 ммоль/л, дости-гая 20 –30 ммоль/л и больше.
Диабет у детей и подростков характеризуется тяжелым течением и, как правило, острым началом заболевания. От времени появления первых признаков заболе-вания (жажда, похудание, выделение большого количества мочи, общая слабость, сухость кожи) до развития тяжёлого состояния и значительных нарушений обмена веществ, проходит обычно 2 недели. Дети, больные сахарным диабетом, требуют обязательного лечения и постоянного лечебного контроля.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
Нами обследован 41 ребёнок, страдающий инсулинзависимым сахарным диа-бетом, и 10 человек контрольной группы. Объектом исследования служили эрит-роциты больных и здоровых детей. Для получения эритроцитов кровь брали из локтевой вены капельным способом, в качестве антикоагулянта использовали гепа-рин.
Исследования проводили в общей эритроцитарной массе детей, страдающих инсулинзависимым сахарным диабетом, и детей контрольной группы.
2.1. Подготовка эритроцитов
Свежую гепаринизированную кровь разливали в центрифужные пробирки по 5 мл. После пятнадцатиминутного центрифугирования при 3000 об/мин при 40 С от-бирались и отбрасывались лейкоцитарный слой и плазма. Эритроциты суспендиро-вали в десятикратном объёме 0.9% раствора NaCl и центрифугировали в течение пятнадцати минут при 3000 об/мин. Супернатант отсасывали, процедуру повторяли 3 раза. Это делалось для более плотной упаковки эритроцитов.
2.2. Метод раздельного определения аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в эритроцитах
Для количественных определений АК, ДАК и ДКГК использовали метод J.H. Roe, C.A. Kuether (1943) в модификации В.В. Соколовского, Л.В. Лебедевой, Т.Б. Лиэлуп (1967). Метод основан на взаимодействии 2,4- динитрофенилгидразина с ДАК с образованием в серной кислоте соответствующего озазона. ДАК и ДКГК дают красное окрашивание, используемое для фотометрического определения. Для вычисления суммы всех кислот их окисляют 2,6- дихлорфенолиндофенолятом натрия. Содержание АК определяют по разности. Для дифференцированного определения ДАК и ДКГК смесь подвергают действию восстановителей, при этом в АК восстанавливается только ДАК. В качестве восстановителя использовали димеркаптопропансульфонат натрия (унитиол)
Реактивы:
1. 2.10 М унитиол (0.84 мл 5% раствора ампулированного препарат в 100 мл 0.2 М фосфатного буфера рН 7.0. хранить не более суток).
2. 5% трихлоруксусная кислота (ТХУ). Хранить в холодильнике не более двух недель.
3. 85% раствор серной кислоты (100 мл воды + 900 мл концентрированной серной кислоты).
4. 2% раствор 2,4-динитрофенилгидразина в 9Н серной кислоте, содержащей 0.25% тиомочевины (хранить в холодильнике не более 1 месяца).
5. 0.001 Н раствор 2,6- дихлорфенолиндофенолята натрия (краска Тильманса). Хранить в темноте не более 1 недели.
6. 0.9% раствор хлорида натрия (физиологический раствор).
Ход определения.
В три пробирки помещали по 0.5 мл упакованных и отмытых от плазмы эрит-роцитов с известным гематокритом. В первую прибавляли 0.25 мл физиологиче-ского раствора и 0.25 мл унитиола. После пятнадцатиминутной инкубации при пе-риодическом помешивании суспензии отбирали 0.5 мл экстракта, к которому при-бавляли 1.5 мл ТХУ.
В две другие пробирки также прибавляли по 1.5 мл ТХУ.
В две пробирки вносили по 0.75 мл супернатанта, полученного при центрифу-гировании смеси упакованных эритроцитов с ТХУ. В одну из пробирок добавляли по каплям 0.001 Н раствор 2,6- дихлорфенолиндофенолята натрия до появления слаборозового окрашивания, устойчивого в течение 30 секунд. В третью пробирку помещали 0.75 мл супернатанта, полученного после центрифугирования смеси упакованных эритроцитов с физиологическим раствором, унитиолом и ТХУ. Во все пробирки добавляли по 0.25 мл 2,4- динитрофенилгидразина и доводили объём до 1.25 мл дистиллированной водой, инкубировали при 100 0 С в течение 10 минут и охлаждали в ледяной бане. В каждую пробирку добавляли небольшими порциями 1.25 мл 85% раствора серной кислоты, охлаждая в ледяной бане после каждой пор-ции. Окрашенные растворы фотометрировали через час при длине волны 540 нм.
Концентрацию кислот определяли по формуле:
С = (3*А)/0.085; где
С – концентрация кислот, мг%
3 – концентрация стандартного раствора, мг%
А – оптическая плотность пробы
0.085 – оптическая плотность стандартного раствора
2.3. СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ
Результаты исследований обрабатывались статистически (Лакин И.А., 1976).
ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Целью исследования являлось определение содержания аскорбата и его окис-ленных форм – ДАК и ДКГК в общей эритроцитарной массе взрослых, страдающих ИЗСД, со стажем болезни более 10 лет; сравнение и сопоставление полученных результатов с данными, полученными ранее, в ходе работы со здоровыми детьми и страдающими ИЗСД. В эксперименте участвовал 21 взрослый в возрасте от 25 до 40 лет, 37 больных детей и группа контроля, включающая 10 здоровых детей. Результаты исследований отображены на диаграммах.
Рис.1. Содержание общей АК, АК, ДАК и ДКГК в эритроцитах здоровых детей и детей, страдающих ИЗСД (мг%)
Рис. 2. Содержание общей АК, АК, ДАК и ДКГК в эритроцитах взрослых, страдающих ИЗСД (мг%)
Как следует из полученных результатов, в эритроцитах детей и взрослых, стра-дающих ИЗСД, наблюдается увеличение содержания окисленной форма АК-ДАК, что может свидетельствовать о нарушении процесса восстановления АК в ДАК, большем участии АК в метаболических процессах, нарушении транспорта АК в клетке.
Процентное содержание общей АК, АК, ДАК и ДКГК также демонстрирует превалирование окисленных форм АК над восстановленной.
Рис. 3. Содержание общей АК, АК, ДАК и ДКГК в эритроцитах здоровых детей и страдающих ИЗСД (%).
Рис. 4. Содержание общей АК, АК, ДАК и ДКГК в эритроцитах взрослых, страдающих ИЗСД (%).
Все полученные данные согласуются с данными литературы об изменении об-щего количества АК в организме при патологии (нормальное содержание составля-ет 5 – 15 мг%) и соотношения «окисленная форма АК/восстановленная форма АК» в сторону увеличения первой.
ВЫВОДЫ
1. Содержание общей АК в эритроцитах детей и взрослых, страдающих ИЗСД, составляет 19.52 мг% и 6,47 мг%, в эритроцитах здоровых детей – 12.48 мг%.
2. Содержание восстановленной АК в эритроцитах больных детей и взрослых составляет 4.1 и 2,01 мг% (20.5 и 31% от общей АК), в эритроцитах здоро-вых детей – 4.28 мг% (33%).
3. Содержание окисленных форм АК – ДАК и ДКГК в эритроцитах больных детей и взрослых составляет 15.5 и 4.46 мг% (79.5 и 69% от общей АК), в эритроцитах здоровых детей – 8.36 мг% (67%).
4. В общей эритроцитарной массе больных детей соотношение окисленная форма АК/ восстановленная форма АК составляет 4/1, что свидетельствует о превалировании окисленной формы АК над восстановленной.
5. В общей эритроцитарной массе здоровых детей это соотношение равно 2/1, т.е., налицо тенденция к росту содержания восстановленной АК.
Заключение
Уже давно доказали тот факт, что аскорбиновая кислота является постоянной составной частью тканей и органов человека. Важность выполняемых ею физиоло-гических функций не подлежит сомнению. Некоторые из них давно известны и хо-рошо изучены. Например, то, что витамин С оказывает благоприятное воздействие на работу иммунной системы, нормализует эритропоэз и продукцию коллагена, яв-ляется компонентом антиоксидантной системы клетки. Однако многочисленные исследования недавнего времени показали, что возможности этого вещества гораз-до шире, чем представлялось до сих пор. К примеру, было обнаружено ценное свойство аскорбата нормализовать уровень сахара в крови, оказывая положитель-ное воздействие на углеводный обмен. При выполнении этой и других биохимиче-ских функций аскорбиновая кислота обратимо окисляется в ДАК, при последую-щем воздействии окислителя необратимо переходит в ДКГК. По данным литерату-ры, соотношение «окисленная форма АК/восстановленная форма АК» может изме-няться при различных патологиях, как и ее общее содержание в организме. Одной из распространенных патологий является инсулинзависимый сахарный диабет. По-скольку ИЗСД является эндокринной патологией, протекающей с нарушением уг-леводного обмена, в регуляции которого аскорбат играет немаловажную роль, бы-ло бы логичным предположить, что его содержание в организме больного окажется иным, чем у здорового человека. Экспериментальные данные подтвердили это предположение. В организме больного ребенка содержание общей АК повышено на 37 % по сравнению с общей АК и составляет 19,52 мг%, тогда как нормальным считается наличие от 5 до 15 мг% аскорбата. Среднее значение АК у здорового ре-бенка – 12,48 мг%. В то время как содержание ДКГК в процентном соотношении практически не изменено и составляет у больных и здоровых детей 46 и 49,4 % со-ответственно (6,16 мг% и 8,96 мг%), концентрация ДАК у больных детей повышена против здоровых почти вдвое и составляет 33,5 % вместо 17,6 % (6,54 мг% и 2,2 мг%). Основные различия выявляются в процентном содержании восстановленной формы АК. Ее содержание у здоровых детей составляет 33 % общей АК (4,28 мг%), тогда как у больных детей оно ниже на 13 % и составляет 4,1 мг%. Таким образом, соотношение «окисленная форма АК/восстановленная форма АК» у больных детей составляет 4:1, в отличие от здоровых детей, у которых оно равняется 2:1.
На основании этих данных можно предположить следующие причины подоб-ных изменений содержания общей АК и ее метаболических форм в организме больных ИЗСД детей:
1) При ИЗСД нарушены все виды обмена веществ в организме – углеводный, белковый и жировой. В последнем случае возрастает количество свободных радикалов, вследствие чего АОС испытывает большую нагрузку. Возрастает содержание одного из ее компонентов – аскорбата, он более активно вклю-чается в метаболические процессы, возможно, тем самым в какой-то мере компенсируется снижение концентрации другого ее компонента – С-SH;
2) Почти двукратное возрастание уровня ДАК в организме больного ребенка при практически неизменном количестве ДКГК может свидетельствовать о нарушении процесса восстановления ДАК в АК; возможно снижена актив-ность фермента ДАК – редуктазы. При ИЗСД ее активность снижена на 50 %, что приводит к сокращению содержанияС-SH, необходимого для процесса восстановления ДАК в АК. Одновременно снижается активность ГБФДГ, в реакции которой образуется необходимый для работы С-R NADPH;
3) Нарушение транспорта АК в клетке.
Несколько иная картина наблюдается в отношении взрослых, страдающих ИЗСД. Здесь общее содержание АК находится близко к нижнему пределу нормы и составляет 6,47 мг%. Содержание ДКГК составляет 11,4 % (0,73 мг%), ДАК – 57,6 % (3,73 мг%), АК – 31 % (2,01 мг%). Сопоставляя эти показатели с таковыми у детей, можно заключить, что активное участие АК в работе АОС решено не коли-чественным, а качественным путем. Так, доля неактивной ДКГК составляет 11 %, тогда как на долю метаболически активных АК и ДАК приходится 89 % от общего количества АК. Такое превалирование активных форм АК особенно в сочетании с повышенным содержанием АК может указывать на своеобразную «адаптацию» фермента ДАК-редуктазы в ходе многолетнего лечения болезни (свыше 10 лет). Для подтверждения данных предположений и выяснения механизма приспосабли-ваемости (если таковая имеется) необходимы дальнейшие исследования.
В настоящее время определенно сказать можно следующее: страдающие ИЗСД, особенно дети, в процессе лечения нуждаются в проведении антиоксидантной те-рапии.
ЛИТЕРАТУРА
1. Абрамова Ж.И., Оксенгендлер Г.И. Человек и противоокислительные ве-щества. –Л.:Наука, 1985. –230 С.
2. Авраамова Т.В., Титова Н.М. Руководство по большому биохимческому практикуму. –Красноярск: Изд-во КГУ, 1978, ч.1. –С.80-82.
3. Асатиани В.С. Ферментные методы анализа. –М.:Наука, 1969. –С.26-40.
4. Ахромеева Г.И. Определение дегидроаскорбиновой кислоты в пищевых продуктах //Вопросы питания. –1988. -№3. –С.66-88.
5. Ашкинази И.Я. Разрушение эритроцитов // Физиология системы крови. Физиология эритропоэза. –Л.:Наука, 1979. –С.274-334.
6. Березовский В.М. Химия витаминов. –М.:Пищевая промышленность, 1973. –С.230-300.
7. Борец В.М. Витамины. –М.:Наука, 1980. –29 С.
8. Бохински Р. Современные воззрения в биохимии. –М.:Мир, 1987. –С.120-154.
9. Браунштейн А.Е. Процессы и ферменты клеточного метаболизма. –М.:Наука, 1987. –44С.
10. Бременер С.М. Витамины. –М.:Медицина, 1974. –194С.
11. Бреслер В.М., Никифоров А.А. Транспорт органических кислот через плазматические мембраны дифференцированных эпителиальных слоёв у позвоночных. –Л.:Наука, 1981. –С.52-111.
12. Букин В.Н. Биохимия витаминов. –М.:Наука, 1982. –С.17-19.
13. Владимиров Г.Е. Об энергетической функции АТФ в клетке. –Л.:Наука, 1980. –44С.
14. Гаврилов О.К., Козинец Т.И., Черняк Н.В. Клетки костного мозга и пери-ферической крови. –М.:Медицина, 1985. –288С.
15. Галактионов С.Г. Биологически активные. –М.:Молодая гвардия, 1988. –С.4-84.
16. Григорьев Г.П. Цитохром Р-450 и витамин С //Вопросы питания. –1983. -№4. –С.5-10.
17. Дегли С., Никольсон Д. Метаболические пути. –М.:Мир, 1973. –С.189-196.
18. Домбровская Ю.В. Витаминная недостаточность у детей. –М.:Медицина, 1983. –63С.
19. Ефимов А.С., Бездробный Ю.В. Структура и функции инсулиновых рецеп-торов. –Киев.:Наукова думка, 1987. –С.4-104.
20. Канунго М. Биохимия старения. –М.:Медицина, 1982. –194С.
21. Киверин М.Д. Витамин С и профилактика С-витаминозных состояний на Севере. –Сев.-Зап. книжное изд., 1971. –С.5-7.
22. Кон Р.М. Ранняя диагностика болезней обмена веществ. –М.:Медицина, 1986. –С.17-42.
23. Косяков К.С. Клиническая биохимия. –Л.:Медицина, 1997. –С.113-118.
24. Меньщикова Е.Б., Зенков Н.К. Антиоксиданты и ингибиторы радикальных окислительных процессов // Усп. совр. биол. –1993. –№4. –С.442-455.
25. Мережинский М.Ф. Нарушения углеводного обмена при заболеваниях че-ловека. –Минск.:Медицина, 1987. –С.22-28.
26. Моисеева О.И. Физиологические механизмы регуляции эритропоэза. –Л.:Наука, 1985. –185С.
27. Мосягина Е.Н., Владимирская Е.Б. Кинетика эритрона //Кинетика фермен-тативных элементов крови. –М.:Медицина, 1976. –С.101-122.
28. Мосягина Е.Н., Фёдоров Н.А., Гудим В.И. Эритропоэз // Нормальное кро-ветворение и его регуляция /Под ред. Н.А.Фёдорова. –М.:Медицина, 1976. –С.341-457.
29. Новое в гематологии /Под ред.А.И. Воробьёва, Ю.И.Лория. –М.:Медицина, 1974. –С.18-22.
30. Новикова С.Г. На приёме больной сахарным диабетом //Здоровье. –1997. -№3.-С.14-19.
31. Спиричев В.Б. Врождённые нарушения обмена витаминов. –М.:Медицина, 1995. –С.12-19.
32. Патологическая биохимия /Под ред. А.Ф. Симёнова. –М.:Медицина, 1994. –С.130-147.
33. Рубина Х.М. Биохимия эритроцитов //Физиология системы крови. Физио-логия эритопоэза. –Л.:Наука, 1978. –С.211-232.
34. Рубина Х.М. Некоторые данные о связи метаболизма эритроцитов с их кислородно-транспортной функцией //Проблемы гематологии и перелива-ния крови. –1973. -№8. –35С.
35. Рысс М.Н Витамины. –Л.:Наука, 1963. –С.3-9.
36. Свободные радикалы в биологии /Под ред. У.Прайор. –М.:Мир, 1979. –С.272-308.
37. Смирнов Н.И. Витамины. –М.:Медицина, 1974. –С.34-40.
38. Соколовский В.В., Лебедева Л.В., Лиэлуп Т.Б. Определение аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот в биологических тканях // Лаб.дело. –1967. -№12. –С.160-162.
39. Суровова А.П. Витамины в нашем рационе // Здоровье. –1997. -№2. –С.17-20.
40. Схимниковский Б.Г. Авитаминозы у детей //Здоровье. –1998. -№6. –С.11-13.
41. Черницкий Е.А., Воробей А.В. Структура и функции эритроцитарных мембран. –Минск: Наука и техника, 1981. – С.23-56.
42. Черняк Н.Б. Биохимические процессы при созревании и старении эритро-цитов //Нормальное кроветворение и его регуляция. –М.:Медицина,1976. –С.159-186.
43. Baker W.I. Urate and ascorbate: their possible roles as antioxidants in determining longevity of mammalian species //Arch. Biochem. and Biophis. –1987. -№2. –Р.451-457.
44. Basu S., Som S., Ded S. Dehydroascorbic acid reduction in human erythrocytes //J. Chromatogr. Biomed. Appl. –1991. -№1-2. –Р.529-542.
45. Burns J., Evans C. Ascorbic acid in human erythrocytes // J. Biol. Chem. – 1996. - №4. – P. 223-241.
46. Penney J., Zilua S. Role of ascorbate in our organism // J. Biochem. – 1994. - №2. – P. 37-49.
47. Pradhu H.R., Krishnamurthy S. Inhibition of ascorbate autooxidation by human blood //Curr. Sci. (India). –1986. -№8. –Р.403-405.
48. Sahashi Y., Mioki T., Hasegama T. Reduction of ascorbate in erythrocytes // J. Vitaminol. – 1996. - №12. – P.6 – 14.
49. Thompson R.Q. Ascorbic acid content of plasma and cellular components of blood //Anal.Chem. –1987. -№8. –Р.1119-1121.
50. Yamazaki M., Mioki T. Ascorbic acid is cellular components // J. Ferment. Technolog. – 1995. - №7. – P. 422-513.
SUMMARY
The main aim of this work is the study of concentration ascorbic acid, dehydroascorbic acid and DCGA in the human’s erythrocytes. The concentrations of the AA, DAA & DCGA were learned in the common erythrocytes mass.
Our results showed that concentration of AA is lower that concentration of DAA, DCGA.
Приложение 1
Содержание АК, ДАК и ДКГК в эритроцитах детей, страдающих инсулинзави-симым сахарным диабетом (мг%)
№ АК ДКГК ДАК АК
1 27,32 13,06 7,9 6,36
2 27,68 16,66 8,9 2,12
3 12,56 5,3 3,52 3,74
4 17,86 10,02 4,16 3,68
5 19,78 11 6,36 2,42
6 17,84 10,66 6,70 0,84
7 26,64 12,14 7,8 6,7
8 13,18 4,14 3,88 5,16
9 18,04 10,26 4,40 3,38
10 19,74 11,12 6,22 2,4
11 27 16,94 8,06 2
12 18,14 10,8 6,82 0,52
13 19,76 8,48 4,24 7,04
14 14,82 8,32 5,30 1,2
15 27,52 8,48 9,32 9,68
16 17,01 8,15 6,8 2,06
17 19,5 7,01 9,1 3,39
18 16,4 6,4 5,43 4,57
19 17,7 5,22 7,92 4,56
20 12,4 4,81 6,1 1,49
21 16,33 7,49 6,4 2,44
22 17,77 6,29 9,2 2,21
23 23,27 10,01 7,6 5,66
24 18,8 7,26 8,13 3,41
25 20,5 8,16 7,3 5,04
26 22,55 9,25 6,24 7,06
27 17,74 9,14 6 2,6
28 19,22 7,17 7,3 4,75
29 16,38 6,19 6,29 3,9
30 24,14 10,21 7,24 6,69
31 16,88 8,19 5,3 3,39
32 19,02 9,14 4,9 4,98
33 19,74 6,7 7,16 5,88
34 22,16 10,2 8,12 3,84
35 16,01 6,9 5,49 3,62
36 13,3 7,1 4,2 2,08
37 19,2 9,03 6,59 3,58
19,52 8,96 6,54 4,1
% 100 46 33,5 20,5
Приложение 2
Содержание АК, ДАК и ДКГК в эритроцитах детей, страдающих инсулинзави-симым сахарным диабетом и здоровых детей
форма АК ДКГК ДАК АК АК ДКГК ДАК АК
АК М m М m М m М m М m М m М m М m
С 19.52 8.96 0.9 6.54 0.49 4.1 0.04 12.480.5 6.16 1.01 2.2 0.56 4.28 0.82
0.89
% 100 46 33.5 20.5 100 49.4 17.6 33
Р <0.01 <0.05 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01